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Since the first report on organic field-effect transistors (OFETs) Scheme 1. Synthesis of 1
in 19861 OFETSs have attracted increasing interest during the past OHC CHO
decades because of their easier fabricating and lower cost compared Q\NQ POCl3 \QNO TiCly, Zn
with traditional silicon-based transistct3hey can be ideally used DMF
in large-area, compact, and lightweight plastic circuits on flexible
substrates in electronic dewcé_m rt_ecent years, great progress has can be easily purified by recrystallization and gradient sublimation.
been m_ade on both the fabrlcatlc_)n methods of OFETS_ and the Thermogravimetric analysis (TGA) measurements gave the thermal
synthesis ‘of hlgh-performange semlconduc.tor matedrEt.g)femally, decomposition temperatures,), 338°C for 1 and 400°C for 2,
some typical organic materials have achieved mobilities beyond i, jicating their good thermal stability to be used as active layers
10 cnt V-1 s"1%that can even be compared with mobilities of ;. orETs.
amorphous-silicon devices. Despite this remarkable development, Single crystals ofl were obtained by the slow evaporation of
the design of new semiconductors with high OFET performances g, ent from dichloromethane solution. The molecular structure of
and a better understanding of the relationship between the structure; \ -« shown in Figure 1a: it could be seen that fpurhenylene
and the property are still the major challenges in modern molecular i were linked by two nitrogen atoms and ethylene bridges to
elect_ronlcs. . . ) ) form a macrocycle. These linking atoms adopted coplanar structure
Tr'larylamlne-based organic §em|conductors havg been. W",’e'y with each phenylene ring canting out of this plane with torsion
studied as hole transport materials for optoelectronic applications angles from 34.60 to 50.35The molecules in the crystal packed

(€9, _xerography, °f9a”‘° light-emitting diodes, e?th_ese __into columns along th-axis direction as shown in Figure 1b. These
materials possess attributes, such as good electron-donating ab'“tycolumns then stacked in a so-called “layer-by-layer” pattern both

and reasonably high ambient stability, that meet well with the 5 5nqc axis directions. Such column and layer-by-layer packing
requirements for OFETSs application. HOW(?\_/?r' mos_t of the VeIY manner should favor efficient hole transportation.

recent reports presented low FET mobilities owing to their — tpe yanordeposited thin films dfand2 on SiOy/Si substrates
amorphous nature in solid steétéiere, we would like to reporta o6 characterized by X-ray diffraction (XRD) (Figure S10). The
new FET semiconductor based on triarylamine units with a ypn nattern of thin films ofL. deposited at 22C displayed a series

macrocyclic structure, compourd Different from those linear, ¢ sharply resolved peaks assignable to multipld)@€flections,
star-shaped or dendrimeric triarylamines for amorphous mate”als'indicating thatl formed highly crystalline layer-structure in thin

a closed ring and steric crowded structure will restrict the rotation films. It shows an interlayer peak af2= 6.86, corresponding to
of the pheny! groups and improve the molecular ordering in the ; y_ ghacing of 12.87 A. This value is almost identical to that of
solid state, that will facilitate the charge carrier transportation. layer spacing along theaxis direction in the single crystal
Ethylene was chosen as linkage for its ability to effectively extend 13.05 A), showing that the molecular packing in the thin films
thezz-conjugated length, reduce the band gap, and tune the electrical, oq aimost the same as that in single crystals. On the other hand,
properties:?’ For comparison, a linear analog@ ¢as investigated  ypp yesults of2 exhibited no reflection peaks, indicating that the
simultaneously. films were almost amorphous and the molecules were randomly
— oriented. Therefore, a significant improvement of molecular order-
Q ing in the evaporated thin films was achieved by moleduweith
(O ) QN ring architecture. . . .
@ @ AFM images show complementary information about these films
_ N/ (Figure S11). As we know, the morphological features of thin films
1
The synthesis of compountlis summarized in Scheme 1. It

depend significantly on substrate temperatufgy. At 22 °C 1
can be conveniently synthesized by McMurry coupling reaction

formed large-area and interconnected crystalline domains with an
average diameter of km, which were very helpful to hole

from 4,4-diformyltriphenylamine Although the yield ofl (9.0%)

was a little lower, it was only a two-step reaction that can be

transportation. The crystal grains grew in size and elongated in
shape with increasing substrate temperature. However, film dis-
operated in a large scale. Compouhdas synthesized according
to the literaturé. Both 1 and 2 have large solubility in common

continuities and large gaps increased as well, which had large
organic solvents, such as @El,, chloroform, and toluene. They

1
pyridine

negative effect on OFETs. ContrastB/formed films with many
discontinuities at each temperature, exhibiting poor hole transport

properties.
t Key Laboratory of Organic Solids. OFET deylce§ were fabricated using a top-contact geometry on
* Graduate School of Chinese Academy of Sciences. a layer of SiQ dielectrics (450 nm). Gold electrodes with W/L of
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Figure 1. (a) Top view and side view of the molecular structure of
compoundL. (b) Stacking pattern df in the crystal viewed along thHeaxis
(hydrogen atoms were omitted for clarity).

type. The cyclic structure also led to a significant reduction of the
reorganized energy. Because of the two facts, compautisplayed

an improved mobility in FETs as compared to that of linear
compound2. Another attractive character of FETs basedlds a
high on/off ratio up to 10 Considering the intrinsic stability of
triphenylamine-based materials, this result may provide a new
promising choice for organic semiconductors for OFETs. We are
currently investigating modifications of these molecules to improve
the FET performance.
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Figure 2. (a) Plots of drain-to-source curremg§) vs drain-to-source voltage
(Vps) for the FET of1 fabricated on Si@at 22°C. (b) —Ips and (Ipg)*?2

XRD, and AFM. This material is available free of charge via the Internet
at http://pubs.acs.org.

vs Vg plots for the same device &bs of —60V.
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